If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+119x-3600=0
a = 1; b = 119; c = -3600;
Δ = b2-4ac
Δ = 1192-4·1·(-3600)
Δ = 28561
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{28561}=169$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(119)-169}{2*1}=\frac{-288}{2} =-144 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(119)+169}{2*1}=\frac{50}{2} =25 $
| 7m=-4 | | (7x–5)²=16 | | 6(3x–10)=14 | | (7x–5)2=16 | | -y^2-y+4=0 | | x-(0.025x)+1000+0.23x=150000 | | x-(0.025x)+0.23x=149000 | | 5x+10+3x+2=90 | | -1÷x^2=0,25 | | 5x0=56 | | 185a=0 | | 7x+-10=53 | | 4x19=3x | | 708967=-2E+07x+8E+07 | | 50=4x-12 | | 6(x-6)=-46 | | 78−5x=8x | | 2.25x=35 | | 5^(n)+5^(n)+5^(n)+5^(n)+5^(n)=5^(6) | | 7x/3-7=x/8+21 | | 7/3x-7=x/8+21 | | (8+x)*(5+x)=140 | | 0=4x^2-4x-63 | | 8+x*5+x=140 | | 7-2s=5 | | 2/x=9/21+x | | (6/5x^2)=(1/5x)+(1/x^2) | | (6/5^2)=(1/5x)+(1/x^2) | | 7x+3(2–x)+x=2+x. | | 4p^2+4p-14=1 | | 5a^2-14=-2+11a | | 30–(2x+1)=–13. |